PROBLEM STATEMENT

How can Cathay leverage their data to better forecast box office demand and revenue, thus optimising session scheduling and aid negotiations with film distributors?

BOX OFFICE FORECASTING & MOVIE SESSION OPTIMIZATION

Develop prediction models that:

- Gives deeper insights to trends
- Forecast revenue through movie attributes
- Aids in optimising session scheduling

OUR APPROACH

- Identify key factors affecting movie attendance
- Forecast box office revenue and admissions using machine learning
- Optimize scheduling with goal programming and data visualization.

FORECASTING NET BOX OFFICE: REGRESSION MODEL

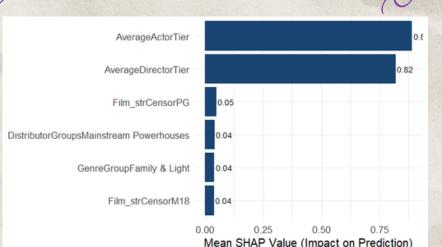
REVENUE REGRESSION

Predict a film's expected box office revenue & range before release

OBJECTIVE:

MODEL INPUTS:

- Actor & Director Tiers (historical performance)
- Distributor Group (K-means on performance & genre mix) etc



TOP PREDICTORS

PREDICTION EXAMPLE

Feature	Input		
Genre Group	Horror&Supernatural		
Actor Tier	6		
Director Tier	1		
Censorship Rating	M18		
Language Group	Mainstream		
Distributor Group	Mainstream Powerhouse		
Release Month Tier	1		
Predicted Revenue	\$1,041.93		
Estimated Range	\$403.56 - \$2,687.63		

TAKEAWAYS & RECCOMMENDATION

- ✓ Net box office regression provides some basis for negotiation
- ✓ Admits regression and Optimization model generates predicted weekly demand & allocates x no. of sessions for each screen in a week
- ✓ Data visualisation provides a guideline on popular time slots for movie scheduling
- ✓ Our models incorporates flexibility for long term usage
- Incorporate media spend, pre-release hype metrics to enhance predictive power

OPTIMIZE SESSION SCHEDULING: MACHINE LEARNING MODELS & DATA VISUALISATION

ADMITS REGRESSION 🧀

Provide an estimated weekly demand for a specific movie (used as inputs for the optimisation model)

Category	Specify Input/Values			
Previous Week's Admits	0			
Weeks since released	0			
Genre Group	Drama & Realistic			
Language Group	Major Languages			
Film Actor Tier	1			
Director Tier	1			
Distributor Tier	1			
Month Tier	1			
Holiday week?	1			
Cinema branch	5			
redicted Admits	470			

OPTIMIZATION MODEL

MODEL CONSIDERATION

- Predicted demand of a movie (from Admits Regression)
- Occupancy rate of each screen
- Number of sessions targetted for each week

OUTPUT EXAMPLE

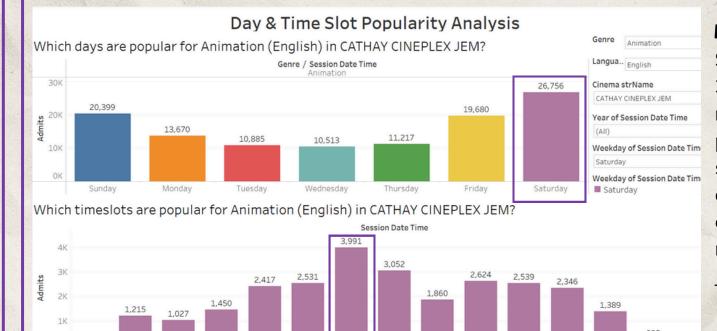
Predicted Demand	Total No. of Sessions	Screen 1	Screen 2
54	3	0	3
104	6	0	6
187	10	7	3
256	14	7	7
294	16	7	7

RESULTS

No. of sessions allocated to each screen in a week for each movie

DATA VISUALISATION IN

OUTPUT EXAMPLE:



RESULTS

Saturday 3pm is the most popular time slot for an animation english movie at lem

FORECASTING NET BOX OFFICE: SUPPLEMENTARY

REVENUE REGRESSION

MODEL INPUTS:

- Actor & Director Tiers (historical performance)
- Distributor Group (K-means on performance & genre mix)
- Censorship Rating
- Grouped Genre, Language & Month (trends domain knowledge)

XGBoost model explains ~83% of box office variations. On average, predictions deviate by ~36% (RMSE = 0.857) from actual outcomes. Prediction ranges are based on the model's error, reflecting the unpredictability of film performances.

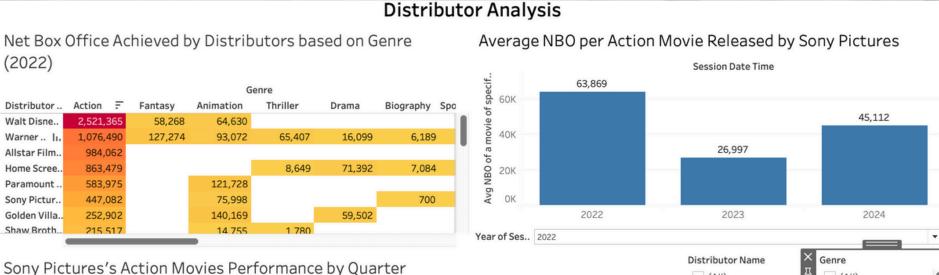
APPROACH

- Select film attributes (genre, actor tier, etc.)
- Predicts box office revenue before release
- Revenue range is provided to reflect uncertainty
- Use results + dashboards to guide planning or distributor negotiation

MODEL PERFORMANCE

PredictedRevent >		Lower Estima >			Upper Estimat >		
\$	234.32	\$	90.28	\$	605.65		
\$	234.32	\$	90.28	\$	605.65		
\$	150.24	\$	57.67	\$	388.89		
\$	234.32	\$	90.28	\$	605.65		

DATA VISUALISATION



OPTIMIZE SESSION SCHEDULING: MACHINE LEARNING MODELS & DATA VISUALISATION

ADMITS REGRESSION

APPROACH

- 2 prediction models:
 - Predicting first week admits
 - Predicting subsequent weeks admits
- Past admits, movie-specific attributes and time-related features used in predicting admits
- Specify inputs to obtain predicted admits

OPTIMISATION MODEL

	No. of admits			
Low-Tier Movies	< 300 admits			
Mid-Tier Movies	300 - 1000 admits			
High-Tier Movies	> 1000 admits			

3 Optimisation Models for different movie tiers

Predicted Demand	Total No. of Sessions	Screen 1	Screen 2	Screen 3	Screen 4	Screen 5	Screen 6
54	3	0	3	0	0	0	0
104	6	0	6	0	0	0	0
187	10	7	3	0	0	0	0
256	14	7	7	0	0	0	0
294	16	7	7	1	0	1	0

NOTES:

- Occupancy rates for each screen in each model calculated from past data
- Flexibility of Model:
 - o Different weights are allocated to the different screens
 - Multiplier for occupancy rates
 - o Target number of sessions in a week / each screen